What is vanadium, how is it currently being used and why is there increasing excitement around its role in the future?

 

To reduce our dependency on fossil fuels and benefit from renewable sources like the sun and wind, we need substantial amounts of finite sources, such as vanadium. Luckily for us, vanadium is the fifth most abundant transition metal in the earth’s crust, and Australia is home to some of the largest deposits in the world. 

 

Though there is growing interest around this versatile metal and the key role it promises to play in the green energy storage revolution, it is a relatively obscure substance which many are not familiar with. Here we break down what it is, how it’s being used and why there is increasing excitement around its role in the future.

 

 

Vanadium Intro

What is vanadium?

Although vanadium is predominantly used as a steel alloy in today’s market, it has a vast array of other uses, from ‘smart’ windows to cardioverter defibrillators. Perhaps the most buzz-worthy use of vanadium is the role Vanadium Redox Flow Batteries (VRFBs) play in green energy storage. With demand for renewable energy growing at a record pace, the need for utility-scale energy storage has never been more crucial, and impressively vanadium offers a battery material that is 100% reusable.

 

Vanadium is not exactly a new kid on the block. Discovered in 1801 by Andrés Manuel del Río, the element takes its name from ‘Vanadis’: an old Norse term for the Scandinavian goddess Freyja. Possessing all the strength and mystical allure of its namesake, this silvery grey metal is the sixth strongest metal on earth and is incredibly versatile. Adding less than 1% of vanadium to steel not only doubles the material’s strength, but makes the resulting steel resistant to shock, vibration, and corrosion. When combined with titanium, vanadium creates the best strength-to-weight ratio of any engineered material on earth. 

 

More than 63 million tonnes of vanadium are hiding in plain sight throughout the world today. Not found in its metallic form in nature, it occurs as a trace element in more than 60 minerals, in a range of rock types. Vanadium metal is obtained by reducing vanadium pentoxide with calcium in a pressure vessel.

 

 

 

Vanadium History

Vanadium Redox Flow Batteries – the next big thing?

VRFBs are quite unique in the battery world. They work by taking advantage of the natural properties of vanadium, a metal with four different oxidation states. Rather than using the metal in a solid state, a liquid vanadium electrolyte solution is used for both half-cells, divided by a proton exchange membrane. Vanadium electrolyte is reusable, recyclable, and has a battery lifespan of 25+ years. 

 

What makes VRFBs special is their ability to store large amounts of energy at a ready state for long periods of time, and rapidly release that energy as required. With new sources of green power, how do we ensure communities receive electricity when the wind isn’t blowing and the sun isn’t shining? VRFBs hold the answer, enabling energy output regardless of weather and temperature fluctuations, length of day or unstable grids. VRFBs are non-flammable, can be charged and discharged at the same time, and there is no risk of cross-contamination as only one metal is used. The beauty of vanadium is that it’s infinitely recyclable. Unlike lithium, it is possible to lease it out for use in a battery for a long period and then still recycle it. 

 

Low-cost energy storage is going to be very important in the years to come, and VRFBs look to be one of the lowest cost means of storing electricity effectively in a localised fashion. While vanadium itself doesn’t come cheap, batteries using vanadium can be counted on to last for years, due to their recyclable nature.

 

 

 

Australian vanadium

Loading component...

Advantages vanadium

‘V’ is for versatile

Loading component...

Loading component...

Loading component...

Want to read more about mining?

Read more

Loading component...